Cooling Formulas

CONVERSION

1 Ton = 12000 Btu/hr

COOLING LOAD REQUIREMENT

Total Cooling Load (Btu/hr) = $4.5 \times CFM \times (H1 - H2)$

Where:

CFM = Airflow in Cubic Feet Per Minute

H1 = Entering Air Enthalpy (Btu/lbm dry air)

H2 = Leaving Air Enthalpy (Btu/lbm dry air)

Or

Total Cooling Load (Btu/hr) = Sensible Cooling Load (Btu/hr) + Latent Cooling Load (Btu/hr)

Where

Sensible Cooling Load (Btu/hr) = CFM x Density Factor x (T1 - T2)

Latent Cooling Load (Btu/hr) = CFM \times 0.69143 \times (G1 - G2)

Where:

CFM = Airflow in Cubic Feet Per Minute

Density Factor = 1.08 +
$$\frac{(70-Blower Temp) * .024}{}$$

T1 = Entering Air Drybulb Temperature (°F)

T2 = Leaving Air Drybulb Temperature (°F)

G1 = Grains of Moisture of Entering Air = 7000 x humidity ratio (lbm moisture/lbm of dry air)

G2 = Grains of Moisture of Leaving Air = 7000 x humidity ratio (lbm moisture/lbm of dry air)

EFFICIENCY CALCULATION

SEER = BTU / W-hr

COST OF COOLING:

Cost of cooling = BTU/hr x hrs of operation x electricity cost ($\frac{kw-hr}{r}$) / (SEER x 1000)